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ABSTRACT 

The ferromagnetic transition temperature of MnAsxSbl _x solid solutions for 

o ~ x ~ 1 have been measured as a function of pressure up to 4.5 kbar. Previous 

work has shown that for the solid solutions in the concentration range 0.9 ~ x ~ 1 

the magnetic transition is first-order and is accompanied by a hexagonal to ortho-

rhombic structure transformation, while for 0 ~ x ~ 0.9 the magnetic transition 

is second-order with no structural change. We have found that the initial pressure 

derivative of the transition temperature, 0 T / 0 P, changes discontinuously in 
c 

the narrow concentration range 0. 87 ~ x ~ 0.90, further demarcating the first 

and second-order regions. We show that an itinerant electron ferromagnet model 

can be applied to the solid solutions which exhibit second-order behavior. From 

the experimental values of 0 T / 0 P a minimum value of the Stoner enhancement 
c 

factor, (1 - lfl, i s estimated for the second-order solid solutions . We also 

find that substituting Sb for As in the first-order region increases the critical 

pressure, Pc' which stabilizes the orthorhombic phase to lowest temperature. 

This further supports Goodenough's observation of a critical molar volume 

range in which the first-order transformation occurs. 
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I. INTRODUCTION 

The isomorphic metallic compounds MnAs and MnSb have different magnetic 

properties which are believed to be due to differences in the Mn-Mn separation 

distance. For increasing temperature, MnAs exhibits a first-order ferromagnetic 

(FM) to paramagnetic (PM) transition at 31 3°K which is accompanied by a change in 

crystal symmetry from the hexagonal NiAs structure (B 81 ) to the orthorhombic MnP 

structure (B 31). (Hereinafter we use FM to denote ferromagnetic, ferromagnet, 

or ferromagnetism, and similarly for PM.) On further heating, a second-order 

transition involving a change from a low-spin PM to a high-spin PM phase and 

a change in crystal symmetry from the orthorhombic (B 31) to hexagon~l structure 

(B 81 )1 is observed at 398°K. On the other hand, MnSb has a second-order FM 

to PM transition at 572°K with the crystal structure remaining hexagonal (B 81 ) 

through the transition. 2 A complete series of solid solutions is formed by 

MnAs and MnSb in which the hexagonal lattice parameters decrease monotonically 

from MnSb to MnAs. 3 

The various magnetic transition temperatures and crystal 

solid solutions MnAs Sbl as reported by Sirota and vasilev4 
x -x 

structures of the 

and Goodenough 

et al. 5 are summarized in Fig . 1. Here, for increasing temperature, T denotes 
c 

the FM to PM transition temperature, T' denotes the PM to PM transition tempera-

ture at which the effective moment decreases, and Tt is a PM to PM transition 

temperature at which the effective moment increases and the crystal structure 

changes from orthorhombic to hexagonal. For the solid solutions in the concentra-

tion range 0. 9 ~ x ~ 1.0 the transition from the FM hexagonal phase to the PM 

orthorhombic phase is first-order. All other transitions are second-order. 

From Fig. 1 we see that over the concentration rffilge 0 ~ x ~ 0. 80 the FM 

to PM transition temperature , T , decreases with increasing As concentration. In 
c 

addition, the effect of substituting As for Sb is to decrease the lattice 



parameters 3 (decrease the Mn-Mn separation distance); thus one might expect Tc to 

be quite sensitive to pressure and to decrease with the application of pressure. 

As we shall report on in Sec. III, we have observed a decrease in Tc with 

increasing pressure for solid solutions in this concentration range. 

Goodenough and co-workers have proposed a band model to explain some of the 

magnetic properties of MnAs. l ,5, 6 The essential features of their model are a 

filled s-p bonding (valence) band and an empty s-p antibonding (conduction) 

band where the Fermi energy lies between the bonding and antibonding bands, and 

the Mn 3-d states lie near the Fermi energy . In the hexagonal FM phase the 

crystalline field splits the Mn 3-d states into th~'ee distinct energy levels 

The t orbital is directed toward the near neighbor 
o 

(nri) Mn along the c-axis, the two t± orbitals are directed toward nn Mn in the 

basal plane, and the two e orbitals are directed toward nn As. It is also 
g 

argued that there is a critical Mn-Mn separation, R ~3 .1- 3 . 7 A, such that an 
c 

itinerant description is used if the Mn-Mn separation is less than R and a 
c 

localized description is used if the Mn-Mn separation is greater than R .1, 7 
c 

Since the Mn-Mn separation is less than R along the c-axis, the t and e cog 

levels broaden into narrow itinerant bands. 8 However, in the basal plane the 

t levels are transitional since the Mn-Mn separation can be greater or less 
± 

than R depending upon the crystallographic phase. Finally in their model, it 
c 

is postulated that there is an intra-atomic exchange splitting between the up 

and down spin bands. 

Over the entire concentration range of the 'solid solutions , the Mn-Mn 

separation distance along the c-axis remains less than R , and thus the t 
c 0 

and e levels should be narrow itinerant bands. One might then expect that an 
g 

itinerant electron model may describe the pressure dependence of the FM to PM 

transition. The weak itinerant electron theory as developed by Wohlfarth9 and 
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Edwards and WohlfarthlO has been used to study the magnetic behavior of such 

9 11 12 materials as ZrZn2 and the Invar alloys. Recently, Wohlfarth and Bartel 

have shown how to estimate electron correlation effects from pressure measure-

ments for weak itinerant FM's. In Sec. II we extend the itinerant electron 

model to include the so-called strong itinerant FM'~ and we shall show how pressure 

measurements may be used to determine a minimum value for the Stoner enhancement 

factor and consequently estimate the correlation effects. This model describes 

a second-order phase transition, and it will be used to analyze the experimental 

data ' presented in Sec. IV for only those solid solutions in the concentration 

range x < 0.9 where these materials exhibit a second-order behavior. In Sec. IV 

we shall also comment on how inclusion of electron-lattice and exchange-striction 

effects may be able to explain the first-order nature of the transition for 

x > 0.90. 

It has been established in MnAs that above a critical pressure of 4 kbars 

the orthorhombic phase is stabilized. l ,6 According to Goodenough and Kafalas~ 

the existence of this critical pressure is related to a critical molar volume. 

Within this critical molar volume there is a high-spin to low-spin transition 

which they interpret as a "drastic" change in the intra-atomic exchange energy at 

a maximum critical bandwidth. Then as we substitute Sb for As the lattice 

expands and the bandwidth decreases so that a higher critical pressure should 

result for stabilizing the orthorhombic phase. Since the orthorhombic phase 

exists in the solid solutions only over the concentration range 0. 90 $ x $ 1, 

we have measured the pertinent part of the pressure-temperature magnetic phase 

diagram of the solid solution MnAsO. 90SbO.10' The maximum allowable Sb concen-

tration was chosen to maximize the increase in critical pressure. These 

results will also be presented in Sec. III and discussed in Sec. IV. 

~~~""""""""""""""""""""""" ______ L 



II. ITINERANT EIECTRON FERROMAGNET MODEL 

It is the purpose of this section to present an elementary theory, unifying 

several existing theories, of a single band, itinerant electron FM. In particu-

lar, we shall develop a theory, appropriate for 3-d electrons, for the Curie 

temperature, Tc ' and its pressure derivative, a Tela P; and we shall show how 

estimates of the effective exchange, I, times the density of states at Fermi 

level, N(€F)' can be made from the measurements of a Tela P. The theory 

presented here follows quite closely the earlier work of Wohlfarth,9 Edwards and 

Wohlfarth,lO Shiga,13 and Wohlfarth and Bartel,12 but includes details which 

have not been discussed in these earlier works. 

For our model we assume that the exchange splitting is given by 

nI~ where I is the effective intra-atomic exchange (accounting for the electron 

correlations) between the itinerant electrons, n is the number of d-electrons 

per atom, and ( is the relative magnetization per electron arising from single-

particle excitations. In the Stoner theory, the exchange splitting is 2~ e ' r 

where ~e ' is the molecular field approximation interaction; thus ~e ' = 1/2 nI. 

The single particle excitations are described by the Stoner equations9 , lO 

(1) 

where 

f(e,T]) = {exp [(e - 'I1 )/~TJ + l}-l 

and 

Here ~ is paramagnetic chemical potential, H is the applied magnetic field, and 

N(e) is the density of states. In the limit as T --0 T such that C --0 0 and c ' 
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letting H = 0, we can expand the Fermi function exponentials in the expression 

for C, Eq. (1), and obtain the well known result 

I f co N( e) 
o ~ !\ Me a. d (2) 

H=O 

Within the framework of the model, Eq. (2) can be solved for T if N(e) is known. 
c 

Even if we don It know N( €) we can solve Eq. (2) by use of the Sommerfeld expansion. 

To terms quadratic in T we obtain14 
c 

where 

( 4 ) 

Here N(~) is the density of states per atom per spin at the paramagnetic Fermi 

level, and TF is the effective degeneracy temperature defined by9,10 

T 2 
F 

2 
TT 

6 

where N(m)(€F) is the m-th derivative with respect to energy evaluated at €F' 

2 The expression for T ,Eq. (3), is identical to what one would obtain from the 
c 

singularity in the exchange enhanced susceptibility where the F-integral of 

Lang and Ehrenreich15 is expanded by means of a Sommerfeld expansion. In order 

for the system to be FM, we have from Eq. (3) the Stoner criterion, 1 ~ 1. 

The expression for T 2, Eq. (3), is general to the extent that we have not c 

specified the origin or nature of I and we have not restricted N(€F)' To find 



the pressure dependence of T requires knowledge of the pressure dependencies 
c 

of T
F

, N(8
F

), and I. In the following discussion we shall make some assumptions 

as to the nature of I and N( 8F ). 

Let us assume that the FM behavior can be described by the Hubbard modell 6 

for a single, nondegenerate, d-band orbital, such as discussed by Evenson et al.,17 

where the bare intra-atomic exchange constant is replaced by an effective intra-

atomic exchange which takes into account the individual electron correlations. 

In general we assume that I is a compositionally averaged constant in the case 

of the FM behavior of alloys. For the MnAs Sbl solid solutions considered in 
x -x 

this paper, I is the effective exchange appropriate for the Mn atoms. Using 

double time Green's function techniques and decoupling in first order, the 

exchange splitting is the assumed nIs .18 We assume that I can be found by means 

of a perturbation treatment such as used by Lang and Ehrenreichl 5 or by Kanamori,19 

and we write I as given approximately byI2,13,15,19 

I (6 ) 

where lb is the bare interaction, W is the bandwidth and 'l is a constant. In 

addition we assume that the number of magnetic electrons 

consequently N(8
F

) can be written as12,13 

n . t t 20 remalns cons an , 

where B is another constant and is related to 'i. It is implied that Wand thus 

N(~) scale uniformly (uniform scaling assumption) under volume changes. Finally, 

we assume the volume dependence of W is given by Heine's21 results 

d In wid In V = - 5/ 3 (8 ) 
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Using the above results, Eqs. (6 )-(8 ), the volume dependence of I , Eq. (4) , 

is 

a In I = [2 + a ln \ ] 
a ln V 3 a ln V 

which is independent of Sand y and where here \ is assumed volume dependent. 

For the density of states of the form given by Eq. (7), it can be shown that 

TF 'V W, and hence from Eq . (8), a ln TF/a ln V = - 5/3. Using Eqs. (3), (4) , (8) 

and (9) the volume dependence of T becomes 
c 

a In T /0 In V == r c 

or equivalently using Eq. ( 3 ) 

In terms of pressure, Eq. (11) can be written as 

where ft is the volume compressibility. 

(10) 

(11 ) 

(12) 

We shall now show how pressure measurements of T can be used to determine 
c 

a maximum value for I and a minimum value for TF . We can rewrite Eq. (10) as 

(13) 



The maximum value that I can have is the bare exchange value ~; thus, the maximum 

value for the ratio I/~ is one. Hence, the experimental value of r can be 

used to determine the maximum values of I. From Eq. (13) we have 

Imax = 1 + ~ ~ + a In va In v] ~ + ~ r 
which for 0 In Ib/O In V ~ 0 reduces to 

I = 1 + 2 [r + 2] -1 
max 6 3 

(14 ) 

(15 ) 

Then using values for I obtained from Eqs. (14) or (15) we can obtain a minimum 

value for TF using Eq. (3). 

For weak itinerant FM's I ~ 1.0 and for weak electron correlation effect 

I/Ib ~ 1.0; thus the second term in Eq. (10) is dominant, and from Eq. (12) we 

have a T /0 P ~ - l/T. Example_s of weak itinerant FM' s are the Fe-Ni, Fe-pt, 
c c 

and Fe-Pd Invar alloys where it has been experimentally observed that 

o T 10 P ~ 
c I 22 constant T . 

c For strong itinerant electron FM's I > 1 and 

for strong correlation effects I/Ib < 1 such that the first term in Eq. (10) is 

dominant, and from Eq. (12) we have 0 T /0 P ~ T. An example of a strong itin-
c c 

erant FM is Ni
J 

where it is found that 0 T /0 P = (5/ 3 ) l{T ~ 0. 68'K/kbar in c c 

good agreement with experimental values of 0.32-0.42°K/kbar. 9 It is note-

worthy that in the limit of weak itinerant FM and for large r such that 

Irl »5/3 and neglecting the volume dependence of ~J the results of this paper 

reduce to the results given previously by Wohlfarth and Bartel. 12 
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III. EXPERrnENTAL RESULTS 

For the preparation of the solid solutions, powders of 99.9% pure Mn, As, 

and Sb were mixed to the desired proportions, pressed into pellets, sealed in an 

evacuated quartz tube, and heated to 1073°K for 2 days. The chemically reacted 

product was then crushed, made into pellets, and annealed at 1073°K for 1 day. 

There were no observed differences in the magnetic transitions or chemical 

composition if the samples were quenched in air or were slowly furnace cooled. 

Chemical analysis of these materials indicated they were stoichimetric to within 

4 at.% and the ratio of As to Sb was within 1 at.% of the nominal value. Powder 

x-ray diffraction patterns indicated the presence of MnO in some of the solid 

solutions. The presence of MnO should not affect the magnetic transition tempera-

tures of these materials. 

The self-inductance teChnique23 ,24 was used to determine the FM to PM tran-

sition as a function of pressure and temperature. Hydrostatic pressure was 

applied with a 4.5-kbar helium gas system25 on the solid solutions which had 

transition temperatures less than 323°K and with a Harwood 30 kbar liquid pentane 

apparatus on the solid solutions which had transition temperatures greater than 

323°K. A typical reduced self-inductance versus temperature plot as obtained for 

the MnAsO•
9
SbO. l solid solution is shown in Fig. 2. The transition temperature 

was arbitrarily taken as the half-transition point. 

The experiment al results are summarized in Figs. 3- 5 . In Fig . 3 the FM to 

PM transition temperature, T , is plotted as a function of concentration. The 
c 

double curve in the concentration range 0. 9 ~ x ~ 1.0 is due to the thermal 

hysteresis associated with the first-order hexagonal FM to orthorhombic PM tran-

sition. No hysteresis is observed for the solid solutions in the concentration 

range 0 ~ x < 0. 90 which is indicative of a second-order FM to PM transition. 
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Hereinafter we will refer to 0.9 ~ x ~ 1.0 as the first-order region and to 

o ~ x < 0.9 as the second-order region. 

In Fig. 4, the initial pressure derivative of the FM to PM transition 

temperature, 0 T /0 P, is plotted as a function of concentration. The pressure 
c 

derivatives were determined to within ±0.15°K/kbar. For MnSb our measured pressure 

derivative of -3.0 oK/kbar is in good agreement with the value -3. 2° K/kbar 

as reported by Hirone et al. 26 It is observed that 0 Tc/OP chan~s almost 

precipitously in a very narrow concentration range ( ~3%) demarcating the 

first and second-order regions. It should be remarked that the x = 0. 88 

material exhibited no thermal hysteresis at 4 .5 kbar -- indicating that the 

transition remained second-order up to this pressure limit. (According to the 

Bean-Rodbell model, 27 it is possible that a second-order transition can be 

forced into a first-order transition under sufficient pressure; we shall comment 

more on this in Sec. IV.) 

In Fig. 5 a portion of the temperature versus pressure magnetic phase diagram 

for MnAs and MnAS
O

.
9
Sb

O
. l is shown. Our results for MnAs are in good agreement with 

1 the result of Menyuk et al. It is observed, as speculated in Sec . I, that the 

substitution of 10% Sb for As does indeed increase the critical pressure required 

to stabilize the orthorhombic phase. The increase in critical pressure is approxi-

mately 0.75 - 1 kbar. 

IV. DISCUSSION 

In part A of this section we will discuss the solid solutions which exhibit 

second-order behavior. The results on these materials will be analyzed in terms 

of the itinerant FM model as presented in Sec. II. In part B the alloys which 

exhibit a first-order behavior will be discussed in terms of the model proposed 

6 by Goodenough and Kafalas. In addition, some comments will also be made on the 

Bean-Rodbell mode127 prediction of pressure induced second-order to first-order 

behavior and on the equivalence of the itinerant electron FM and the Bean-Rodbell 

models. 
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A. Second-Order Behavior 

In Fig. 6, oT lop is plotted as a function of T for the MnAs Sbl solid 
c c x -x 

solutions ' in the concentration range 0 ~ x ~ 0.8. For comparison, the Fe-Ni, 

Fe-Pd, and Fe-pt Invar alloys data of Wayne and Barte122 are included. Similar 

to the Invar alloys, we observe a T -1 type of behavior as predicted by Eq. (12) 
c 

when the second term in Eq. (12) dominates. 

The volume derivative of T is calculated from oT lop where the compressi-
c c 

bility for the solid solutions was obtained by a linear extrapolation between 

the values of 2.2 ± 0.5 X 10-3 kbar- l for MnSb28 and 4.55 X 10-3 kbar- l for 

1 MnAs. The values for r are given in Table I. We observe that the values of r 

increase with increasing As concentration and that the magnitude of r is of the 

same order of magnitude as the first term in Eq. (10). In previous works on the 

11 9-12 . I Invar alloys and ZrZn
2 

,lt was observed that r » 5 3 and so the first term 

of Eq. (10) could be neglected. In the case of the MnAs Sb
l 

solid solutions, 
x -x 

this factor of 5/3 must be included in any calculation of band parameters. 

In Table I we give the results of the calculation of I from Eq. (15) for max 

the solid solutions 0 ~ x ~ 0.80 where we assume 0 ln Ib/ o ln V = O. The quoted 

error in the compressibility for MnSb will introduce an uncertainty of ±0.03 in 

the values for I We observe that I decreases with increasing As concen-max max 

tration. According to Wohlfarth's 29 classification, these values of I max 

indicate that MnSb is approaching a strong itinerant FM, and the solid solutions 

are becoming weaker itinerant FM's with increasing As concentration. These 

values of I for the MnAs Sb solid solutions are comparable with the values 
max x l-x 

for the Invar alloys. 30 

From Eq. and using the value of I and T for MnSb from Table I, we calcu
c 

late TF = l380oK. Thus for MnSb we see that Tc ~ 0 .4 TF which indicates the 

Sommerfeld expansion is converging; however, the convergence is slower than one 

would desire. For the materials with x > 0, the convergence is more rapid than 

for x = o. 
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Using Eqs. (3)-(7) we can express Tc as a ~unction o~ the bandwidth W where 

we assume TF ~ W. Then using the value o~ T = 572°K and the value o~ I ~rom c ~x 

Table I ~or MnSb, we can calculate T as a fUnction o~ W. The results o~ these 
c 

calculations are shown in Fig. 7. These results are independent o~ the value o~ 

I/I
b

, 31 but do not include e~~ects of any volume dependence of lb' Notethe 

critical bandwidth such that for w/W ~ 1.206 we do not have FM order, and note 
o 

the quadratic dependence o~ T on W ~or W/W < 1.206 c 0-
Using the available x-ray 

data 32 to est~te W/W and using the experimental values for T we shaw, o c 

in Fig. 7, the experimental results of T as a function of W/W. For x = 0.25 c 0 

we calculate T = 474°K and I = 1.110 in fair agreement with the experimental 
c 

values. For the solid solutions x > 0.25 the agreement is only qualitative. 

The disagreement is not too surprising because of the large differences in 

unit cell volumes for the various compositions. For these large volume differ-

ences one might expect significant changes in the crystal field splittings, and 

consequently significant changes in the electronic wave functions. Any volume 

dependence of Ib would modify the results shown in Fig. 7. Lacking specific 

heat, susceptibility, and magnetostriction data for these materials, we cannot 

determine N(SF)' I, I b , and any volume dependence of Ib individually. In addi

tion, as we shall point out below, we expect rather large electron-lattice and 

exchange-striction interactions for these materials, particularly for the solid 

solutions x > 0.80. Electron-lattice and exchange-striction ef~ects have not 

been included in the calculations displayed in Fig. 7. 

Sirota and Vasilev
4 

have observed a Curie-Weiss type of behavior in the 

-1 -1 -1 PM region ~or MnSb, with a Curie constant, C
M 

= 1.3 emu mole Oe OK • Accord-

ing to the itinerant FM model of Wohlfarth9 the susceptibility in the temperature 
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region TF » T > Tc can be written as 

x 

where 

Here N is the number of atoms per unit volume. 

can be expanded 

(16 ) 

For temperatures near T , Eq. (16 ) 
c 

X T 
X ":' 0 c 

T - T c 
T'<'T c (18) 

which is a Curie-Weiss type of behavior where the Curie constant C
M 

is given by 

C = X T M 0 c 

For MnSb X can be calculated from Eq. (19) to 
o 

8 -2 -1 -1 as compared to X = 1.3 X 10 emu mole Oe o 

(19) 

-2 -1 -1 give X = 0.227 X 10 emu mole Oe 
o 

24 
for ZrZn

2
. This difference in Xo 

between MnSb and ZrZn
2 

For ZrZn
2 

9 I = 1.0042 

is consistent with the values of I for these materials . 

and from this work for MnSb I = 1.206; thus from Eq . (17) max 

X for MnSb should be smaller. 
o 

if N(sF) for MnSb were known . 

A detailed comparison, however, can only be made 

For x > 0, X cannot he reliably extracted from 
o 

the experimental data because the susceptibility has a complicated temperature 

dependence4 which is thought to be due to exchange-striction effects . 

The localized and the itinerant, or collective, descriptions of magnetic 

electrons have been investigated by Goodenough . 33 He considered the case of 

one d-electron per relevant d-orbital which corresponds to a half-filled band 

or to half-filled localized orbital, and the magnetic order is antiferromagnetic 

(AFM) • I In the absence of competing exchange interactions, the Neel temperature, 
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TN' for localized electron AFM increases with the transfer integral, b, since 

the exchange in t eraction is proportional to b2 ; whereas, it has been shown that 

TN for a band AFM decreases with increasing bandwidth33 ,34 where the bandwidth 

is proportional to b. Goodenough concludes that the magnetic moment and TN 

should vary continuously in going from a localized to a band description. 

We expect b to increase with increasing pressure; hence, we expect that for the 

localized electron description TN should increase with increasing pressure, and 

for the itinerant description TN should decrease with increasing pressure.34 

Furthermore, we expect that the general arguments for an AFM apply to the FM 

case of interest here. The observed decrease in the FM to PM transition temper-

ature in the MilAs Sb
l 

compounds suggests that the itinerant description is the 
x -x 

appropriate one. Although these alloys are anisotropic, the isotropic model 

discussed in this paper describes the pressure effects quite well. 

B. First-Order Region 

Previous experimental studies6 on MilAs and MilAs P
l 

have established that 
x -x 

a first-order hexagonal FM to orthorhombic PM transition occurs only if the molar 

volume at Tc lies within a narrow critical range Vt - 6V < V < Vt , where 

6V/V~ 0.025. This narrow molar volume range is related through the thermal expan-

sion to the temperature range Tt - 125 °K < T < T
t

, where Tt is the second-order 

orthorhombic PM to hexagonal PM transition temperature. This, coupled with the fact 

that there is a low-spin ~ high-spin transition in this temperature interval,led 

6 Goodenough and Kafalas to postulate the existence of a maximum critical band-

width that would support spontaneous FM and the existence of a volume dependent 

intra-atomic exchange interaction. This model predicts the existence of a 

critical pressure, P , above which the PM orthorhombic phase is stabilized 
c 

4 1 6 to absolute zero; a P = kbar has been found for MilAs.' If P is 
c 



-16-

substituted for As, then one expects P to decrease since the substitution 
c 

of P decreases the lattice parameters (the molar volume), and thus the band-

width increases. Furthermore, if sufficient P is substituted for As, Pc ~ O. 

These effects have been observed. 5,6 However, if Sb is substituted for As, 

the lattice parameters (molar volume) increase and the bandwidth decreases. 

Therefore, the substitution of Sb should cause Pc to increase, which is in 

accord with our experimental results. 

Now if more than 10% Sb is substituted for As, then the molar volume 

will be larger than the critical volume required for a first-order transition, 

and the resulting solid solutions exhibit second-order transitions. If this 

model is correct, then at sufficiently high pressure one might expect to 

induce a first-order phase change in the materials with concentration x ~ 0.9. 

At the time this work was done, the pressures available to us (-4 kbar) were 

insufficient to check conclusively this prediction on the x = 0.88 solid solu

tion. Estimations based on the isotropic Bean-Rodbell mode127 indicate a 

second-to-first-order transition pressure of approximately 16 kbar for this 

material. This number must be taken lightly, however, since there have been 

objections to using the Bean-Rodbell in its isotropic form for MnAs l We 

are planning to continue the search for a second-to-first order transition 

pressure at higher pressure in the solid solutions with concentrations 

x ~ 0.9. 

The Bean-Rodbell model, 27 which is based on a localized spin picture, 

has been used to describe qualitatively the first-order nature of the transi-

tion in MnAs. A similar situation arises in the itinerant electron model 

when the exchange and electTon-lattice forces are balanced against the elastic 

forces. The result of this balance is that the bandwidth and exchange inter-

action become temperature dependent; then,depending on the parameters, the 
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transition may tend to sharpen and may become first-order as in the Bean-

Rodbell model. This type of procedure has been used to explain thermal 

expansion effects in an itinerant electron AFM34 where only the electron-

lattice interaction was considered. In this case it was demonstrated that 

the balance set up between the elastic and electron-lattice forces is ' 

important in explaining the anomalous behavior of the thermal expansion 

for temperatures near TN. However, for the parameters used in the theory, 

no first-order nature was observed in the phase transition. 34 It is antic-

ipated that inclusion of exchange-striction effects could precipitate a 

first-order phase transition for the itinerant electron AFM. 

Unpublished x-ray data by Goodenough 35 on MnASO. 80SbO.20 show that the 

unit cell volume is quite temperature dependent for temperatures near T 
c 

where the volume decreases continuously from a value of 70.81(A)3 at a 

temperature of approximately 1000K below T to a value of approximately 
c 

70.19(A)3 at T. This represents approximately a 0.9% decrease in the 
c 

volume. For MnAs there is approximately a 1.8% discontinuous volume decrease 

at T for increasing temperature. It is therefore apparent that for x~ 0. 80 
c 

there are large interactions of the lattice with the exchange energy and/or 

the electronic energy. The volume changes associated with these interactions 

depend on the magnetization. Due to the coupling, a discontinuous change in 

the unit cell volume is reflected in a discontinuous change in the magnetiza-

tion, and vice versa. 

The phys ical picture we have for the results of the coupling of the 

magnetization and the lattice is as follows. At low temperatures the magneti-

zation takes on its saturation value, and the magnetic characteristics are 

determined by the bandwidth W, density of states N(8
F

) and the exchange 
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interaction I. As the temperature is increased the lattice expands, and 

due to electron-lattice coupling and exchange-striction,W decreases and 

I can ~ither increase or decrease depending on the sign of 0 In I/o In V. 

For the material under consideration here, as W decrease~ T will increase c 

and the magnetization for T «T will increase over the value it wouid 
c 

have had if Wand I did not depend on the volume. Howeve~ due to the electron-

lattice and exchange-striction effects, the lattice contracts for T ~ Tc 

and thus W increases and T decreases. Hence depending upon the amount of 
c 

coupling, the rate at which W increases (or the apparent Tc decreases) 

determines whether the transition will be second or first-order. For the 

b II 27 " first-order transition, in the words of Bean and Rod e, ... this 

situation is like that of a man who has run beyond the brink of a cliff; 

there is no gentle way dawn." The critical volume discussed by Goodenough 

6 and Kafalas appears to be intimately related to the electron-lattice and 

exchange-striction effects as a detailed theo~J should show. 

Finally, the rather large changes in T with pressure for the first-c -

order region are noteworthy. As shown in Fig. L there is a discontinuous 

change in ~ T / dP at the composition which demarcates the boundary between c 

the first and second-order regions. In addition, there are strong hysteresis 

effects in the first-order region. At this time , we can offer no concrete 

explanation of the rather large (d T / dP) IS for the first-order region except 
c 

to say that the large pressure effects appear to be connected to a "critical 

volume 116 and consequently to the electron-lattice and exchange-striction effects. 

We conclude that for the first-order region electron-lattice and exchange-

striction effects are important, and that inclusion of these effects in an 

itinerant FM model (which is in a similar spirit to the Bean-Rodbell model ) 

will be able to explain in some detail the magnetic and structural behavior. 

I 
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We also conclude that although the itinerant model used to discuss the 

second-order region is rather simple, it contains in it the essential 

features of a more elaborate treatment. 
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Table I. Curie temperature T , r = a ln T 10 ln V, and I ,as calculated c c max 

from Eq. (15) for a In Iblo In v = 0, for various solid solutions of MnAs Sbl x -x 

in the second-order region. 

x(at.% AS) 
T c r I max 

0.00 572 2.38 1.206 

0.25 458 2.97 1.180 

0.50 375 3. 63 1.157 

0. 75 292 5.18 1.122 

0. 80 247 6.20 1.106 
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FIGURE CAPI'IONS 

Magnetic transition temperatures of MnAs Sbl solid solutions. 
x -x 

(0 , • after Sirota and Vasilev h and x after Goodenough et a15 .) 

A typical self-inductance versus temperature plot for the 

x = 0.9 solid solution. 

Concentration dependence of the FM to PM transition temperature 

(. present study, 0 after Sirota and Vasilev 4). 

Concentration dependence of the initial pressure derivative of 

the FM to PM transition temperature. 

Temperature versus pressure magnetic phase diagram for MnAs 

and MnAS O. 9SbO. l ' 

A comparison of a T lop versus T plots for various alloy systems. c c 

(0 MnAs Sb
l 

). Fe-pt) • Fe-Pd, and • Fe-Ni). 
x -x 

A comparis on of the calculated and experimental dependence of T 
c 

on bandwidth (- calculated) • experimental) . 
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